Publications

Jump to 2023 2022 2021 2020 2019

2023 publications

______________________________________
Explicitly probing long wavelength fluctuations in confined fluids with molecular dynamics reveals an anomalous transition to overdamped sound as predicted by continuum theory. Phys. Rev. Lett.
Explicitly probing long wavelength fluctuations in confined fluids with molecular dynamics reveals an anomalous transition to overdamped sound as predicted by continuum theory.

Hannes Holey, Peter Gumbsch, and Lars Pastewka.

"Confinement-Induced Diffusive Sound Transport in Nanoscale Fluidic Channels."

Phys. Rev. Lett. 131 (8), 2023. https://doi.org/10.1103/PhysRevLett.131.084001.

 

______________________________________
Schematic representation of the devices studied in this work. Front. Phys.
Schematic representation of the devices studied in this work.

Özdemir, Ali Deniz, Fabian Li, Franz Symalla, and Wolfgang Wenzel.

“In Silico Studies of OLED Device Architectures Regarding Their Efficiency.”

Front. Phys. 11, 2023. https://www.frontiersin.org/articles/10.3389/fphy.2023.1222589.

______________________________________
Graphical abstract showing the process of using neural network based Hamiltonians and forces for modeling charge transport in organic semiconductors. J. Chem. Theory Comput.
Using neural network based Hamiltonians and forces to model charge transport in organic semiconductors.

Dohmen, Philipp M., Mila Krämer, Patrick Reiser, Pascal Friederich, Marcus Elstner, and Weiwei Xie.

Modeling Charge Transport in Organic Semiconductors Using Neural Network Based Hamiltonians and Forces.

J. Chem. Theory Comput. 19, 13, 2023: 3825–38. https://doi.org/10.1021/acs.jctc.3c00264.

______________________________________
Graphical abstract for a study on dynamic effects on hole transport in amorphous organic semiconductors using a combined QM/MM and kMC approach. J. Chem. Theory Comput.
Studying dynamic effects on hole transport in amorphous organic semiconductors using a combined QM/MM and kMC approach.

Özdemir, Deniz Ali, Samaneh Inanlou, Franz Symalla, Weiwei Xie, Wolfgang Wenzel, and Marcus Elstner.

Dynamic Effects on Hole Transport in Amorphous Organic Semiconductors: A Combined QM/MM and kMC Study.

J. Chem. Theory Comput., 2023. https://doi.org/10.1021/acs.jctc.3c00385.

______________________________________

Monzel, Laurenz, Christof Holzer, and Wim Klopper.

Natural Virtual Orbitals for the GW Method in the Random-Phase Approximation and Beyond.

J. Chem. Phys. 158,  14, 2023: 144102. https://doi.org/10.1063/5.0144469.

______________________________________
Nitrogen phosphorylation in proteins simulated with a new parametrization of DFTB3 Phys. Chem. Chem. Phys.

Kansari, Mayukh, Lena Eichinger, and Tomáš Kubař.

Extended-Sampling QM/MM Simulation of Biochemical Reactions Involving P–N Bonds.

Phys. Chem. Chem. Phys., 2023, 10.1039.D2CP05890A. https://doi.org/10.1039/D2CP05890A.

______________________________________

Schopmans, Henrik, Patrick Reiser, and Pascal Friederich.

Neural Networks Trained on Synthetically Generated Crystals Can Extract Structural Information from ICSD Powder X-Ray Diffractograms.

arXiv Preprint, 2023. https://arxiv.org/abs/2303.11699

______________________________________

Kutzki, Fabian, Diego Butera, Angelina J. Lay, Denis Maag, Joyce Chiu, Heng-Giap Woon, Tomáš Kubař, Marcus Elstner, Camilo Aponte-Santamaría, Philip J. Hogg and Frauke Gräter.

Disulfide Bond Reduction and Exchange in Von-Willebrand-Factor’s C4-Domain Undermines Platelet Binding.

Journal of Thrombosis and Haemostasis, 2023. https://doi.org/10.1016/j.jtha.2023.03.039.

______________________________________
Graphical Abstract J. Chem. Theory Comput.
Using constrained thermodynamic integration for anharmonic correction to free energy barriers.

Amsler, Jonas, Philipp N. Plessow, Felix Studt, and Tomáš Bučko.

Anharmonic Correction to Free Energy Barriers from DFT-Based Molecular Dynamics Using Constrained Thermodynamic Integration

J. Chem. Theory Comput., 2023. https://doi.org/10.1021/acs.jctc.3c00169.

______________________________________

Esmaeilpour, Meysam, Saibal Jana, Hongjiao Li, Mohammad Soleymanibrojeni, and Wolfgang Wenzel.

A Solution-Mediated Pathway for the Growth of the Solid Electrolyte Interphase in Lithium-Ion Batteries.

Adv. Energy Mater. 13, no. 14 (2023): 2203966. https://doi.org/10.1002/aenm.202203966.

______________________________________

Schweer, Julie and Marcus Elstner.

Dealing with Molecular Complexity. Atomistic Computer Simulations and Scientific Explanation

Perspect. Sci., 2023, 1–37. https://doi.org/10.1162/posc_a_00594.

______________________________________

Maag, Denis, Josua Böser, Henryk A. Witek, Ben Hourahine, Marcus Elstner, and Tomáš Kubař.

Mechanism of Proton-Coupled Electron Transfer Described with QM/MM Implementation of Coupled-Perturbed Density-Functional Tight-Binding.

J. Chem. Phys. 158, 2023: 124107. https://doi.org/10.1063/5.0137122.

______________________________________
Graphical abstract Chin. J. Chem.
Investigation of two-dimensionally triptyceneend-capped QPPs in terms of their solution and solid-state behavior.

Roß, Lisa, Julius Reitemeier, Farhad Ghalami, Wen-Shan Zhang, Jürgen H. Gross, Frank Rominger, Sven M. Elbert, Rasmus Schröder, Marcus Elstner, and Michael Mastalerz.

Two Dimensional Triptycene End-Capping and Its Influence on the Self-Assembly of Quinoxalinophenanthrophenazines.

Chin. J. Chem., 41, 2023: 1198—1208. https://doi.org/10.1002/cjoc.202200754.

______________________________________

Grimm, Volker, Tobias Kliesch, and G. R. W. Quispel.

Discrete Gradients in Short-Range Molecular Dynamics Simulations.

arXiv preprint, 2023. https://arxiv.org/pdf/2212.14344.pdf

2022 publications

Visual abstract Blood Adv

Gruber, Sophia, Achim Löf, Adina Hausch, Fabian Kutzki, Res Jöhr, Tobias Obser, Gesa König, et al.

A Conformational Transition of the D′D3 Domain Primes von Willebrand Factor for Multimerization.

Blood Adv 6 (17), 2022: 5198–5209. https://doi.org/10.1182/bloodadvances.2022006978.

______________________________________
Cartoon representation of vWF-C4 .
Cartoon representation of vWF-C4 .

Kutzki, Fabian, Diego Butera, Angelina J. Lay, Denis Maag, Joyce Chiu, Heng-Giap Woon, Tomáš Kubař, et al.

Dynamic Disulfide Bond Topologies in Von-Willebrand-Factor’s C4-Domain Undermine Platelet Binding.

bioRxiv preprint, 08, 2022. https://doi.org/10.1101/2022.08.20.504523

______________________________________
Growth of Graphene on Cu(111) Surface. Nanomaterials
Growth of Graphene on Cu(111) Surface.

Popov, I., Bügel. P., Kozlowska, M., Fink, K., Studt, F., Sharapa, D. I.:

Analytical Model of CVD Growth of Graphene on Cu (111) Surface,

Nanomaterials 202212 (17), 2963. https://doi.org/10.3390/nano12172963

 

______________________________________

Roozmeh, M.; Kondov, I.

Automating and Scaling Task-Level Parallelism of Tightly Coupled Models via Code Generation.

Computational Science – ICCS 2022. Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V. V., Dongarra, J. J., Sloot, P. M. A., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, 2022; Vol. 13353, pp 69–82. https://doi.org/10.1007/978-3-031-08760-8_6.

______________________________________
Studying low-lying excited states in cluster molecules. Dalton Transactions

Bügel, P., Krummenacher, I., Weigend, F., Eichhöfer, A.:

Experimental and theoretical evidence for low-lying excited states in [Cr6E8(PEt3)6] (E = S, Se, Te) cluster molecules

Dalton Trans. 202251, 14568–14580. https://doi.org/10.1039/D2DT01690G

______________________________________
The formation of the hydrocarbon pool (HCP) in the ethanol-to-olefins (ETO) process catalyzed by H-SSZ-13 is studied in a kinetic model with ab initio computed reaction barriers. Catalysis Science & Technology
Studying the formation of the hydrocarbon pool (HCP) in the ethanol-to-olefins (ETO) process catalyzed by H-SSZ-13 in a kinetic model with ab initio computed reaction barriers.

Amsler, J.,Bernart, S., Plessow, P. N., Studt, F.:

Theoretical investigation of the olefin cycle in H-SSZ-13 for the ethanol-to-olefins process using ab initio calculations and kinetic modeling

Catal. Sci. Technol.202212, 3311-3321. https://doi.org/10.1039/D1CY02289J

______________________________________
The self-assembly of the graphene nanoribbon molecular precursor 10,10'-dibromo-9,9'-bianthryl (DBBA) on Au(111). Phys. Chem. Chem. Phys.
Molecular self-assembly of DBBA on Au(111).

Schneider, S.; Bytyqi, K.; Kohaut, S.; Bügel, P.; Weinschenk, B.; Marz, M.; Kimouche, A.; Fink, K.; Hoffmann-Vogel, R.

Molecular self-assembly of DBBA on Au(111) at room temperature.

Phys. Chem. Chem. Phys. 2022, 28371–28380. doi:10.1039/D2CP02268K

______________________________________
(a) Wild-type human dithiol HsGrx1 with two cysteines in the active site and monothiol HsGrx1 in which the C-terminal cysteine has been mutated to a serine.  (b)  The co-substrate GSH in its anionic form GS. (c) The protein substrate HMA4n. J. Chem. Phys.
(a) Wild-type human dithiol HsGrx1 with two cysteines in the active site and monothiol HsGrx1 in which the C-terminal cysteine has been mutated to a serine. (b) The co-substrate GSH in its anionic form GS. (c) The protein substrate HMA4n.

Böser, Julian; Kubař, Tomáš; Elstner, Marcus; Maag, Denis.

Reduction Pathway of Glutaredoxin 1 Investigated with QM/MM Molecular Dynamics Using a Neural Network Correction.

J. Chem. Phys. 2022, 157(15): 154104. https://doi.org/10.1063/5.0123089.

______________________________________
Representation of MOF materials of PCU topology. Front. Mater.
Representation of MOF materials of PCU topology.

Mostaghimi, Mersad; Rêgo, Celso R. C.; Haldar, Ritesh; Wöll, Christof; Wenzel, Wolfgang; Kozlowska, Mariana.

Automated Virtual Design of Organic Semiconductors Based on Metal-Organic Frameworks.

Front. Mater. 2022, 9. https://doi.org/10.3389/fmats.2022.840644

 

______________________________________
Graphical abstract of corresponding publication J. Colloid Interface Sci.

Suyetin, Mikhail; Bag, Saientan; Anand, Priya; Borkowska-Panek, Monika; Gußmann, Florian; Brieg, Martin; Fink, Karin; Wenzel, Wolfgang.

Modelling Peptide Adsorption Energies on Gold Surfaces with an Effective Implicit Solvent and Surface Model.

J. Colloid Interface Sci. 2022, 605, 493–99. https://doi.org/10.1016/j.jcis.2021.07.090.

______________________________________
Graphical abstract of corresponding publication. Org. Electron.
Steps in simulating the growth of organic thin film morphologies.

Degitz, C.; Konrad, M.; Kaiser, S.; Wenzel, W.

Simulating the Growth of Amorphous Organic Thin Films.

Org. Electron. 2022, 102, 106439. https://doi.org/10.1016/j.orgel.2022.106439.

______________________________________
Scale separation in a lubrication gap for multiscale simulations: macro problem (a), micro problem (b), and slip boundary conditions (c). Tribol. Lett.
Scale separation in a lubrication gap for multiscale simulations: macro problem (a), micro problem (b), and slip boundary conditions (c).

Holey, H.; Codrignani, A.; Gumbsch, P.; Pastewka, L.

Height-Averaged Navier–Stokes Solver for Hydrodynamic Lubrication.

Tribol. Lett. 2022, 70 (2), 36. https://doi.org/10.1007/s11249-022-01576-5.

______________________________________
Experimental measured mobilities versus FSSH-BC-IR mobilities obtained using input reorganization energies computed by (a) ωB97XD and (b) B3LYP, respectively. JCTC
Experimental measured mobilities versus FSSH-BC-IR mobilities obtained using input reorganization energies computed by (a) ωB97XD and (b) B3LYP, respectively.

Roosta, S.; Galami, F.; Elstner, M.; Xie, W.

Efficient Surface Hopping Approach for Modeling Charge Transport in Organic Semiconductors.

J. Chem. Theory Comput. 2022, acs.jctc.1c00944. https://doi.org/10.1021/acs.jctc.1c00944.

______________________________________
Two figures with a) Absorption spectra. b) Distribution of dihedral angles. PCCP
a) Absorption spectra. b) Distribution of dihedral angles.

Inanlou, S.; Cortés-Mejía, R.; Özdemir, A. D.; Höfener, S.; Klopper, W.; Wenzel, W.; Xie, W.; Elstner, M.

Understanding Excited State Properties of Host Materials in OLEDs: Simulation of Absorption Spectrum of Amorphous 4,4-Bis(Carbazol-9-Yl)-2,2-Biphenyl (CBP).

Phys. Chem. Chem. Phys. 2022, 10.1039.D1CP04293A. https://doi.org/10.1039/D1CP04293A.

______________________________________
Flattening of the energy-levels in the doped injection layer caused by doping activation. Front. Chem.
Flattening of the energy-levels in the doped injection layer caused by doping activation.

Özdemir, A. D.; Kaiser, S.; Neumann, T.; Symalla, F.; Wenzel, W.

Systematic kMC Study of Doped Hole Injection Layers in Organic Electronics.

Front. Chem. 2022, 9. https://doi.org/10.3389/fchem.2021.809415.

______________________________________
Thiol–disulfide exchange between a methylthiolate and a dimethyldisulfide with a transition state. JCTC
Thiol–disulfide exchange between a methylthiolate and a dimethyldisulfide. The trisulfide state is the global minimum in the gas phase and the transition state in aqueous solution.

Gómez-Flores, C. L.; Maag, D.; Kansari, M.; Vuong, V.-Q.; Irle, S.; Gräter, F.; Kubař, T.; Elstner, M.

Accurate Free Energies for Complex Condensed-Phase Reactions Using an Artificial Neural Network Corrected DFTB/MM Methodology.

J. Chem. Theory Comput. 2022, acs.jctc.1c00811. https://doi.org/10.1021/acs.jctc.1c00811.

2021 publications

Illustration of a pentacene (Pn)-based metal–organic framework thin film fabrication scheme in a layer-by-layer fashion, and the impact of linker-dynamics on the hole mobility Chem. Sci.
Pentacene (Pn)-based metal–organic framework thin film fabrication scheme, and the impact of linker-dynamics on the hole mobility

Haldar, Ritesh, Mariana Kozlowska, Michael Ganschow, Samrat Ghosh, Marius Jakoby, Hongye Chen, Farhad Ghalami, et al.

Interplay of Structural Dynamics and Electronic Effects in an Engineered Assembly of Pentacene in a Metal–Organic Framework.

Chem. Sci. 12 (12), 2021: 4477–83. https://doi.org/10.1039/D0SC07073D

______________________________________

Schieschke, Nils, Beatrix M. Bold, Philipp M. Dohmen, Daniel Wehl, Marvin Hoffmann, Andreas Dreuw, Marcus Elstner, and Sebastian Höfener.

Geometry Dependence of Excitonic Couplings and the Consequences for Configuration-Space Sampling.

J Comput Chem. 42 (20), 2021: 1402–18. https://doi.org/10.1002/jcc.26552

______________________________________
Iron hydride nanoclusters Chemistry Open
Iron hydride nanocluster growth.

Chakraborty, U.; Bügel, P.; Fritsch, L.; Weigend, F.; Bauer, M.; Jacobi von Wangelin, A.

Planar Iron Hydride Nanoclusters: Combined Spectroscopic and Theoretical Insights into Structures and Building Principles.

 Chemistry Open 202110, 265–271. DOI doi:10.1002/open.202000307

______________________________________

Huck, Volker, Po-Chia Chen, Emma-Ruoqi Xu, Alexander Tischer, Ulrike Klemm, Camilo Aponte-Santamaría, Christian Mess, et al.

Gain-of-Function Variant p.Pro2555Arg of von Willebrand Factor Increases Aggregate Size through Altering Stem Dynamics.

Thromb Haemost, 122(02), 2021, 226–39. https://doi.org/10.1055/a-1344-4405.

______________________________________
Design strategies for receptors and synthetic binders for neurotransmitters. Adv. Mater.
Design strategies for receptors and synthetic binders for neurotransmitters.

Grimm, Laura M.; Sinn, Stephan; Krstić, Marjan; D’Este, Elisa; Sonntag, Ivo; Prasetyanto, Eko Adi; Kuner, Thomas; Wenzel, Wolfgang; De Cola, Luisa; Biedermann, Frank.

Fluorescent Nanozeolite Receptors for the Highly Selective and Sensitive Detection of Neurotransmitters in Water and Biofluids.

Advanced Materials 2021, 33, 49: 2104614. https://doi.org/10.1002/adma.202104614.

______________________________________

Basher, Abdulrahman H.; Krstić, Marjan; Fink, Karin; Ito, Tomoko; Karahashi, Kazuhiro;
Wenzel, Wolfgang; Hamaguchi, Satoshi.
 
Erratum: ‘Formation and Desorption of Nickel Hexafluoroacetylacetonate
Ni(Hfac)2 on a Nickel Oxide Surface in Atomic Layer Etching Processes’ [J.
Vac. Sci. Technol. A 38, 052602 (2020)].

 
J. Vac. Sci. Technol. A 2021, 39, 5: 057001. https://doi.org/10.1116/6.0001319.

______________________________________
Systematic steps to generate flexible, application-specific highly accurate force fields by training artificial neural networks. J. Chem. Theory Comput.
Systematic steps to generate flexible, application-specific highly accurate force fields by training artificial neural networks.

Bag, Saientan; Konrad, Manuel; Schlöder, Tobias; Friederich, Pascal; Wenzel, Wolfgang.

Fast Generation of Machine Learning-Based Force Fields for Adsorption Energies.

J. Chem. Theory Comput. 2021, 17, 11: 7195-7202. https://doi.org/10.1021/acs.jctc.1c00506.

______________________________________
Shape-based coarse-grained model of proteins, shown for lysozyme represented by 5 CG beads per a protein unit (a) and continuum model of ion–protein dispersion interactions (b) Phys. Chem. Chem. Phys.
Shape-based coarse-grained model of proteins, shown for lysozyme represented by 5 CG beads per a protein unit (a) and continuum model of ion–protein dispersion interactions (b).

Pusara, Srdjan; Yamin, Peyman; Wenzel, Wolfgang; Krstić, Marjan; Kozlowska, Mariana.

 

A Coarse-Grained xDLVO Model for Colloidal Protein–Protein Interactions.

 

Phys. Chem. Chem. Phys. 2021, 23: 12780–94. https://doi.org/10.1039/D1CP01573G.

______________________________________
Tight-binding scheme for the graphene self-energy calculation and the CNT-decoration. Commun. Phys.
Tight-binding scheme for the graphene self-energy calculation and the CNT-decoration.

Özdemir, A. D.; Barua, P.; Pyatkov, F.; Hennrich, F.; Chen, Y.; Wenzel, W.; Krupke, R.; Fediai, A.

Contact Spacing Controls the On-Current for All-Carbon Field Effect Transistors.

Commun. Phys. 20214 (1), 246. https://doi.org/10.1038/s42005-021-00747-5.

______________________________________
Electrostatic interaction in protein. PCCP
Electrostatic interactions in a protein.

Maag, D.; Putzu, M.; Gómez-Flores, C. L.; Gräter, F.; Elstner, M.; Kubař, T.

Electrostatic Interactions Contribute to the Control of Intramolecular Thiol–Disulfide Isomerization in a Protein.

Phys. Chem. Chem. Phys. 2021, 10.1039.D1CP03129E. https://doi.org/10.1039/D1CP03129E.

______________________________________
Three-dimensional structure of the bR state and the photocycle at pH ≥ 6. PNAS
Three-dimensional structure of the bR state and the photocycle at pH ≥ 6.

Maag, D.; Mast, T.; Elstner, M.; Cui, Q.; Kubař, T.

O to BR Transition in Bacteriorhodopsin Occurs through a Proton Hole Mechanism.

Proc. Natl. Acad. Sci. USA 2021, 118 (39). https://doi.org/10.1073/pnas.2024803118.

______________________________________
Interplay of Density Functional Theory and Machine Learning to analyze Charge Transport in Organic Semiconductors. J. Chem. Theory Comput.
Interplay of Density Functional Theory and Machine Learning to analyze Charge Transport in Organic Semiconductors.

Reiser, P.; Konrad, M.; Fediai, A.; Léon, S.; Wenzel, W.; Friederich, P.

Analyzing Dynamical Disorder for Charge Transport in Organic Semiconductors via Machine Learning.

J. Chem. Theory Comput. 2021, 17 (6), 3750–3759. https://doi.org/10.1021/acs.jctc.1c00191.

______________________________________
The component-separable noncovalent interaction network (CONI-Net) uses an alternative to the symmetry function descriptor designed for efficient large-scale simulations. J. Chem. Theory Comput.
The component-separable noncovalent interaction network (CONI-Net) uses an alternative to the symmetry function descriptor designed for efficient large-scale simulations.

Konrad, M.; Wenzel, W.

CONI-Net: Machine Learning of Separable Intermolecular Force Fields.

J. Chem. Theory Comput. 2021, acs.jctc.1c00328. https://doi.org/10.1021/acs.jctc.1c00328.

______________________________________
Combination of 'Winged termites swarming' by T. R. Shankar Raman and some protein structures. Marie Weiel-Potyagaylo and T. R. Shankar Raman (CC BY-SA 4.0)
Illustration of dynamic particle swarm optimization of biomolecular simulation parameters.

Weiel, M.; Götz, M.; Klein, A.; Coquelin, D.; Floca, R.; Schug, A.

Dynamic particle swarm optimization of biomolecular simulation parameters with flexible objective functions.

Nat. Mach. Intell. 2021. https://doi.org/10.1038/s42256-021-00366-3.

______________________________________
Structure and interactions at the Mavirus capsomer's base. J. Mol. Biol.
Structure and interactions at the Mavirus capsomer's base.

Christiansen, A.; Weiel, M.; Winkler, A.; Schug, A.; Reinstein, J.

The Trimeric Major Capsid Protein of Mavirus Is Stabilized by Its Interlocked N-Termini Enabling Core Flexibility for Capsid Assembly.

J. Mol. Biol. 2021, 166859. https://doi.org/10.1016/j.jmb.2021.166859.

______________________________________
Thermodynamic integration from harmonic approximation to fully interacting system yields anharmonic correction to adsorption free energy. JCTC
Thermodynamic integration from the harmonic approximation to the fully interacting system yields anharmonic correction.

Amsler, J.; Plessow, P. N.; Studt, F.; Bučko, T.

Anharmonic Correction to Adsorption Free Energy from DFT-Based MD Using Thermodynamic Integration.

J. Chem. Theory Comput. 2021,17 (2), 1155–1169. https://doi.org/10.1021/acs.jctc.0c01022.

______________________________________
Boltzmann-average weighted CBP absorption spectra (FWHM 0.1 eV) with varying temperatures 0, 100, 200, 300, 400 and 500 K. Mol. Phys.
Boltzmann-average weighted CBP absorption spectra (FWHM 0.1 eV) with varying temperatures.

Cortés-Mejía, R.; Höfener, S.; Klopper, W.

Effects of Rotational Conformation on Electronic Properties of 4,4′-Bis(Carbazol-9-Yl)Biphenyl (CBP): The Single-Molecule Picture and Beyond.

Mol. Phys. 2021, e1876936. https://doi.org/10.1080/00268976.2021.1876936.

______________________________________
Effect of Impurities on the Initiation of the Methanol-to-Olefins Process: Kinetic Modeling Based on Ab Initio Rate Constants. Catal. Lett.
Entry points of organic impurities into the Methanol-to-Olefins initiation pathway.

Amsler, J.; Plessow, P. N.; Studt, F.

Effect of Impurities on the Initiation of the Methanol-to-Olefins Process: Kinetic Modeling Based on Ab Initio Rate Constants.

Catal. Lett. 2021. https://doi.org/10.1007/s10562-020-03492-6.

2020 publications

Visual abstract Phys. Chem. Chem. Phys.

Bold, Beatrix M., Monja Sokolov, Sayan Maity, Marius Wanko, Philipp M. Dohmen, Julian J. Kranz, Ulrich Kleinekathöfer, Sebastian Höfener, and Marcus Elstner.

Benchmark and Performance of Long-Range Corrected Time-Dependent Density Functional Tight Binding (LC-TD-DFTB) on Rhodopsins and Light-Harvesting Complexes.

Phys. Chem. Chem. Phys. 22,19 (2020): 10500–518. https://doi.org/10.1039/C9CP05753F

______________________________________
Workflow description, wfGenes process stages and subsequent WMS specific validation. IEEE
Workflow description, wfGenes process stages and subsequent WMS specific validation.

Roozmeh, M.; Kondov, I.

Workflow Generation with WfGenes.

IEEE/ACM workflows in support of large-scale science (WORKS). IEEE, 2020; pp 9–16. https://doi.org/10.1109/WORKS51914.2020.00007.

 

______________________________________
Examination of the potential of oxide-supported rhodium single atom catalysts (SACs) for heterogeneous hydroformylation J. Am. Chem. Soc.
Examination of potential of oxide-supported rhodium single atom catalysts (SACs) for heterogeneous hydroformylation.

Amsler J., Sarma, B. B., Agostini, G., Prieto, G., Plessow, P. N., & Studt, F.:

Prospects of heterogeneous hydroformylation with supported single atom catalysts

J. Am. Chem. Soc., 2020,142 (11), 5087-5096. https://doi.org/10.1021/jacs.9b12171

 

______________________________________

Symalla, Franz; Heidrich, Shahriar; Friederich, Pascal; Strunk, Timo; Neumann, Tobias; Minami, Daiki; Jeong, Daun; Wenzel, Wolfgang.

Multiscale Simulation of Photoluminescence Quenching in Phosphorescent OLED Materials.

Adv. Theory Simul. 2020, 3, 4: 1900222. https://doi.org/10.1002/adts.201900222.

______________________________________
Optimized structure of an hfacH molecule placed near a metallic Ni model surface; (a) front view and (b) side view J. Vac. Sci. Technol.
Optimized structure of an hfacH molecule placed near a metallic Ni model surface; (a) front view and (b) side view.

Basher, Abdulrahman H.; Krstić, Marjan; Takeuchi, Takae; Isobe, Michiro; Ito, Tomoko; Kiuchi, Masato; Karahashi, Kazuhiro; Wenzel, Wolfgang; Hamaguchi, Satoshi.

Stability of Hexafluoroacetylacetone Molecules on Metallic and Oxidized Nickel Surfaces in Atomic-Layer-Etching Processes.

J. Vac. Sci. Technol. A 2020, 38, 2: 022610. https://doi.org/10.1116/1.5127532.

______________________________________
Tertiary structure of VHP. PLoS ONE
Tertiary structure observed in VHP REMD simulation.

Voronin, A.; Weiel, M.; Schug, A.

Including Residual Contact Information into Replica-Exchange MD Simulations Significantly Enriches Native-like Conformations.

PLoS ONE 202015 (11), e0242072. https://doi.org/10.1371/journal.pone.0242072.

______________________________________
Hybrid Kinetic Monte Carlo/Molecular Dynamics Simulations of Bond Scissions in Proteins. J. Chem. Theory Comput.
Hybrid kinetic Monte Carlo/Molecular Dynamics simulations of bond scissions in proteins.

Rennekamp, B.; Kutzki, F.; Obarska-Kosinska, A.; Zapp, C.; Gräter, F.

Hybrid Kinetic Monte Carlo/Molecular Dynamics Simulations of Bond Scissions in Proteins.

J. Chem. Theory Comput. 202016 (1), 553–563. https://doi.org/10.1021/acs.jctc.9b00786.

______________________________________
Tenth type III domain of fibronectin with Alexa Fluor dyes attached. Isr. J. Chem.
Tenth type III domain of fibronectin with Alexa Fluor dyes attached.

Reinartz, I.; Weiel, M.; Schug, A.

FRET Dyes Significantly Affect SAXS Intensities of Proteins.

Isr. J. Chem. 202060 (7), 725–734. https://doi.org/10.1002/ijch.202000007.

______________________________________
Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians. J. Chem. Theory Comput.
Charge and Exciton transfer simulations using Machine-Learned Hamiltonians.

Krämer, M.; Dohmen, P. M.; Xie, W.; Holub, D.; Christensen, A. S.; Elstner, M.

Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians.

J. Chem. Theory Comput. 202016 (7), 4061–4070. https://doi.org/10.1021/acs.jctc.0c00246.

______________________________________
One‐Pot Cooperation of Single‐Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization‐Hydrosilylation Process. Angew. Chem. Int. Ed.
One‐Pot cooperation of Single-Atom Rh and Ru solid catalysts for selective Tandem Olefin Isomerization‐Hydrosilylation.

Sarma, B. B.; Kim, J.; Amsler, J.; Agostini, G.; Weidenthaler, C.; Pfänder, N.; Arenal, R.; Concepción, P.; Plessow, P.; Studt, F.; Prieto, G.

One‐Pot Cooperation of Single‐Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization‐Hydrosilylation Process.

Angew. Chem. Int. Ed. 202059 (14), 5806–5815. https://doi.org/10.1002/anie.201915255.

______________________________________
Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts. J. Am. Chem. Soc.
Activity and stability of Single Atom Catalysts investigated with hierarchical computational approach and experiments.

Amsler, J.; Sarma, B. B.; Agostini, G.; Prieto, G.; Plessow, P. N.; Studt, F.

Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts.

J. Am. Chem. Soc. 2020142 (11), 5087–5096. https://doi.org/10.1021/jacs.9b12171.

2019 publications

Bias potential versus target RMSD for elongated-to-bent transition. PLoS Comput. Biol.
Bias potential versus target RMSD for elongated-to-bent transition.

Weiel, M.; Reinartz, I.; Schug, A.

Rapid Interpretation of Small-Angle X-Ray Scattering Data.

PLoS Comput. Biol. 201915 (3), e1006900. https://doi.org/10.1371/journal.pcbi.1006900.