Molecular electronics and spintronics as a challenge for first-principles methods
- Speaker:
-
Time:
12:00 - 12:30
-
Abstract
Carmen Herrmann
University Hamburg
Molecular conductance is measured in different experimental setups such as scanning tunneling microscopes (STMs), molecular break junctions, and nanoparticle arrays [1,2,3]. The motivation behind these experiments is not only studying potential reproducible nanoscale building blocks for electronics or spintronics but also learning about molecules under unusual conditions. Using the spin degree of freedom in such settings offers fascinating options for nanoscale functionality, and also provides new experimental data for improving our insight into fundamental aspects of nonequilibrium physics at that scale [3]. Compromises between accuracy and computational feasibility imply that for molecular electronics and spintronics, a quantitative first-principles description may be elusive. We illustrate the resulting challenges as well as successes for examples such as chiral induced spin selectivity [4,5,6,7], length-dependent charge delocalization in molecular wires [8], and single-molecule magnetoresistance [9].
References
[1] N. Xin, J. Guan, C. Zhou, X. Chen, C. Gu, Y. Li, M. Ratner, A. Nitzan, J. Stoddart, X. Guo, Nat. Rev. Phys., 1, 211-230 (2019)
[2] Y. Liu, X. Qiu, S. Soni, R. Chiechi, Chem. Phys. Rev., 2, 021303 (2021)
[3] P. Gehring, J. Thijssen, H. van der Zant, Nat. Rev. Phys., 1, 381-396 (2019)
[4] B. P. Bloom, Y. Paltiel, R. Naaman, D. H. Waldeck. Chem. Rev. 124, 1950-1991 (2024)
[5] C. Aiello et al., ACS Nano 16, 4989-5035 (2022)
[6] M. Zöllner, S. Varela, E. Medina, V. Mujica, C. Herrmann, J. Chem. Theory Comput., 16, 2914-2929 (2020)
[7] S. Naskar, V. Mujica, C. Herrmann, J. Phys. Chem. Lett. 14, 694-701 (2023)
[8] S. Kröncke, C. Herrmann, J. Chem. Theory Comput., 16, 6267-6279 (2020)
[9] G. Mitra, J. Zheng, K. Schaefer, M. Deffner, J. Z. Low, L. M. Campos, C. Herrmann, T. A. Costi, E. Scheer, https://arxiv.org/abs/2408.00366 (2024)